Computing the Size of Intervals in the Weak Bruhat Order
نویسندگان
چکیده
The weak Bruhat order on Sn is the partial order ≺ so that σ ≺ τ whenever the set of inversions of σ is a subset of the set of inversions of τ . We investigate the time complexity of computing the size of intervals with respect to ≺. Using relationships between two-dimensional posets and the weak Bruhat order, we show that the size of the interval [σ1, σ2] can be computed in polynomial time whenever σ −1 1 σ2 has bounded width (length of its longest decreasing subsequence) or bounded intrinsic width (maximum width of any non-monotone permutation in its block decomposition). Since permutations of intrinsic width 1 are precisely the separable permutations, this greatly extends a result of Wei. Additionally, we show that, for large n, all but a vanishing fraction of permutations σ in Sn give rise to intervals [id, σ] whose sizes can be computed with a sub-exponential time algorithm. The general question of the difficulty of computing the size of arbitrary intervals remains open.
منابع مشابه
The cd-index of Bruhat Intervals
We study flag enumeration in intervals in the Bruhat order on a Coxeter group by means of a structural recursion on intervals in the Bruhat order. The recursion gives the isomorphism type of a Bruhat interval in terms of smaller intervals, using basic geometric operations which preserve PL sphericity and have a simple effect on the cd-index. This leads to a new proof that Bruhat intervals are P...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملOptimal Non-Parametric Prediction Intervals for Order Statistics with Random Sample Size
In many experiments, such as biology and quality control problems, sample size cannot always be considered as a constant value. Therefore, the problem of predicting future data when the sample size is an integer-valued random variable can be an important issue. This paper describes the prediction problem of future order statistics based on upper and lower records. Two different cases for the ...
متن کاملAsymptotic algorithm for computing the sample variance of interval data
The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...
متن کاملGeneralized Dyck tilings (Extended Abstract)
Recently, Kenyon and Wilson introduced Dyck tilings, which are certain tilings of the region between two Dyck paths. The enumeration of Dyck tilings is related with hook formulas for forests and the combinatorics of Hermite polynomials. The first goal of this work is to give an alternative point of view on Dyck tilings by making use of the weak order and the Bruhat order on permutations. Then w...
متن کامل